

Fig. 2. Stereoview of the unit cell, viewed slightly oblique to the $b$ axis with $c$ horizontal.
angles are given in Table 2. The molecule is illustrated in Fig. 1. The unit cell is illustrated in Fig. 2.

Related literature. Structure of methyl 2-[(2,6-dimethoxyphenyl)ethynyl]benzoate: Huang, Evans, Fronczek \& Gandour (1991). Structure of methyl 2-[(2,6-dimethoxyphenyl)ethynyl]-3-methoxybenzoate: Evans, Horn, Fronczek \& Gandour (1990). Structure of diphenylacetylene: Mavridis \& Moustakali-Mavridis (1977). Structure of bis( $m$ chlorophenyl)acetylene: Espiritu \& White (1977). Structure of $p$-butyl- $p^{\prime}$-methoxydiphenylacetylene: Cotrait (1977).

## References

Cotrait, D. T. (1977). C. R. Acad. Sci. Sér. C, 285, 547550.

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for $X$-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Espiritu, A. A. \& White, J. G. (1977). Acta Cryst. B33, 38993901.

Evans, K. L., Horn, G. W., Fronczek, F. R. \& Gandour, R. D. (1990). Acta Cryst. C46, 502-504.

Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Huang, E. T., Evans, K. L., Fronczek, F. R. \& Gandour, R. D. (1991). Acta Cryst. C47, 2727-2729.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C. (1969). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-299. Copenhagen: Munksgaard.
Mavridis, A. \& Moustakali-Mavridis, I. (1977). Acta Cryst. B33, 3612-3615.

Acta Cryst. (1992). C48, 765-767

# 3-(2,6-Dihydroxyphenyl)-1 $\mathbf{H}$-2-benzopyran-1-one 

By Enoch T. Huang, Kevin L. Evans, Frank R. Fronczek and Richard D. Gandour*<br>Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

(Received 17 July 1991; accepted 5 September 1991)


#### Abstract

C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}, M_{r}=254.2\), monoclinic, $P 2_{1}, a$ $=5.9476$ (4) $, \quad b=8.1253(10), c=12.0198$ (12) $\AA, \beta$ $=100.938(7)^{\circ}, \quad V=570.3(2) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.480 \mathrm{~g} \mathrm{~cm}^{-3}$ at $297 \mathrm{~K}, \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54184 \AA, \mu=$ $8.56 \mathrm{~cm}^{-1}, F(000)=264,1268$ unique data, final $R=$ 0.035 for 1113 reflections with $I>3.0 \sigma(I)$. Maximum deviations from planarity of the two aromatic rings are 0.008 (3) $\AA$ for the ring containing the two hydroxy substituents and 0.006 (4) $\AA$ for the aromatic ring of the benzopyran. The two rings form a dihedral angle of $113.3(1)^{\circ}$. The $\mathrm{C}=\mathrm{C}$ double bond distance is 1.330 (3) $\AA$. Two distinct intermolecular hydrogen bonds are observed. One hydroxy group donates an intermolecular hydrogen bond to the carbonyl O atom of a second molecule, and also accepts a second intermolecular hydrogen bond from a hydroxy group of a third molecule. The former hydrogen bond has $\mathrm{O} \cdots \mathrm{O}$ distance 2.680 (3) $\AA$ and

^[ *To whom correspondence should be addressed. ]


angle at H of $175(4)^{\circ}$, while the latter has $\mathrm{O} \cdots \mathrm{O}$ distance 2.763 (3) $\AA$ and angle at H of 152 (3) ${ }^{\circ}$.

Experimental. The title compound was isolated as a side product of the demethylation of methyl 2 -[(2,6-dimethoxyphenyl)ethynyl]benzoate using boron tribromide. Colorless plates of (1) were isolated by

(1)
slow evaporation from methanol. Crystal size $0.02 \times$ $0.25 \times 0.30 \mathrm{~mm}$, space group from systematic absences $0 k 0$ with $k$ odd, cell dimensions from setting angles of 25 reflections having $20<\theta<25^{\circ}$. Data collection on Enraf-Nonius CAD-4 diffrac-

Table 1. Coordinates and isotropic thermal parameters ( $\AA^{2}$ )

|  | $B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $B_{\text {cq }}$ |
| O1 | -0.3668 (3) | 1 | -0.0899 (1) | 3.07 (3) |
| O2 | 0.2718 (3) | 0.6551 (3) | -0.1183 (1) | 3.57 (4) |
| O3 | -0.2880 (3) | 0.6597 (3) | 0.2221 (2) | 3.80 (4) |
| 04 | -0.1565 (3) | 0.7476 (3) | 0.0743 (1) | 2.67 (3) |
| C1 | -0.2392 (4) | 0.9194 (3) | -0.1561 (2) | 2.52 (5) |
| C2 | -0.2882 (5) | 0.9294 (4) | -0.2726 (2) | 3.11 (5) |
| C3 | -0.1455 (5) | 0.8511 (4) | -0.3346 (2) | 3.60 (6) |
| C4 | 0.0404 (5) | 0.7613 (4) | -0.2819 (2) | 3.36 (5) |
| C5 | 0.0886 (4) | 0.7501 (4) | -0.1650 (2) | 2.74 (5) |
| C6 | -0.0488 (4) | 0.8305 (4) | -0,0993 (2) | 2.42 (4) |
| C7 | 0.0070 (4) | 0.8299 (3) | 0.0257 (2) | 2.31 (4) |
| C8 | 0.1890 (4) | 0.8990 (4) | 0.0901 (2) | 2.70 (5) |
| C9 | 0.2183 (4) | 0.8962 (3) | 0.2118 (2) | 2.52 (5) |
| C10 | 0.4031 (4) | 0.9724 (4) | 0.2829 (2) | 3.25 (6) |
| C11 | 0.4167 (5) | 0.9697 (5) | 0.3982 (3) | 3.95 (6) |
| C12 | 0.2516 (6) | 0.8896 (5) | 0.4462 (2) | 4.14 (7) |
| C13 | 0.0695 (5) | 0.8136 (4) | 0.3782 (2) | 3.48 (6) |
| C14 | 0.0525 (4) | 0.8171 (3) | 0.2616 (2) | 2.52 (4) |
| C15 | -0.1395 (4) | 0.7365 (4) | 0.1883 (2) | 2.67 (5) |

Table 2. Bond distances $(\AA)$ and angles $\left({ }^{\circ}\right)$

| $\mathrm{O} 1-\mathrm{C} 1$ | $1.367(3)$ | $\mathrm{C} 6-\mathrm{C} 7$ | $1.475(3)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{O} 2-\mathrm{C} 5$ | $1.366(3)$ | $\mathrm{C} 7-\mathrm{C} 8$ | $1.330(3)$ |
| $\mathrm{O} 3-\mathrm{C} 15$ | $1.213(3)$ | $\mathrm{C} 8-\mathrm{C} 9$ | $1.440(3)$ |
| $\mathrm{O} 4-\mathrm{C} 7$ | $1.396(3)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1.402(3)$ |
| $\mathrm{O} 4-\mathrm{C} 15$ | $1.358(3)$ | $\mathrm{C} 9-\mathrm{C} 14$ | $1.403(4)$ |
| $\mathrm{Cl}-\mathrm{C} 2$ | $1.378(3)$ | $\mathrm{C} 10-\mathrm{C} 11$ | $1.373(4)$ |
| $\mathrm{C} 1-\mathrm{C} 6$ | $1.406(3)$ | $\mathrm{C} 11-\mathrm{C} 12$ | $1.391(5)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.386(4)$ | $\mathrm{C} 12-\mathrm{C} 13$ | $1.374(4)$ |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.375(4)$ | $\mathrm{C} 13-\mathrm{C} 14$ | $1.386(4)$ |
| $\mathrm{C} 4-\mathrm{C} 5$ | $1.382(3)$ | $\mathrm{C} 14-\mathrm{C} 15$ | $1.459(3)$ |
| $\mathrm{C} 5-\mathrm{C} 6$ | $1.401(4)$ |  |  |
| $\mathrm{C} 7-\mathrm{O} 4-\mathrm{C} 15$ | $122.0(2)$ | $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ | $126.3(2)$ |
| $\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2$ | $122.0(2)$ | $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ | $120.8(2)$ |
| $\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 6$ | $116.6(2)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ | $122.8(2)$ |
| $\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$ | $121.3(2)$ | $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14$ | $118.8(2)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $119.1(2)$ | $\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 14$ | $118.4(2)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $121.1(2)$ | $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ | $119.9(3)$ |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $119.8(3)$ | $\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$ | $121.0(3)$ |
| $\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$ | $116.8(2)$ | $\mathrm{Cl1-C12-C13}$ | $120.1(3)$ |
| $\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 6$ | $122.4(2)$ | $\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ | $119.4(3)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $120.8(2)$ | $\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 13$ | $121.2(2)$ |
| $\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$ | $117.9(2)$ | $\mathrm{C} 9-\mathrm{C} 14-\mathrm{C} 15$ | $118.7(2)$ |
| $\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 7$ | $120.1(2)$ | $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$ | $120.0(2)$ |
| $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $122.0(2)$ | $\mathrm{O} 3-\mathrm{C} 15-\mathrm{O} 4$ | $116.9(2)$ |
| $\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 6$ | $112.8(2)$ | $\mathrm{O} 3-\mathrm{C} 15-\mathrm{C} 14$ | $124.4(2)$ |
| $\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8$ | $120.9(2)$ | $\mathrm{O} 4-\mathrm{Cl5}-\mathrm{C} 14$ | $118.7(2)$ |

tometer, $\mathrm{Cu} K \alpha$ radiation, graphite monochromator, $\omega-2 \theta$ scans designed for $I=25 \sigma(I)$, subject to maximum scan time $=120 \mathrm{~s}$, scan rates varied 0.63$3.30^{\circ} \mathrm{min}^{-1}$. One quadrant of data having $2<\theta<$ $75^{\circ}, 0 \leq h \leq 7,0 \leq k \leq 10,-15 \leq l \leq 15$ measured. Data corrected for background, Lorentz and polarization effects. The standard reflections 200, 020, 006 decreased in intensity by $5.3 \%$ during data collection, and a linear correction was applied. Absorption corrections were based on $\psi$ scans, with relative transmission coefficients ranging from 0.9264 to 0.9979 . 1450 total data were collected, and redundant $0 k l$ and $0 k \bar{l}$ data merged, $R_{\text {int }}=0.016$, to yield 1268 unique data, 1113 observed with $I>3 \sigma(I)$.

Structure solved by direct methods using MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982), refined by full-matrix least squares based on $F$ with weights $w=4 F_{o}^{2}\left[\sigma^{2}(I)+\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$ using Enraf-Nonius SDP/VAX (Frenz \& Okaya, 1980), scattering factors of Cromer \& Waber (1974), anomalous coefficients of Cromer (1974). Non-H atoms refined anisotropically; H atoms located from difference maps and refined isotropically. Final $R=0.035$ ( 0.043 for all data), $w R=0.043, S=1.900$ for 212 variables. Maximum shift $<0.01 \sigma$ in the final cycle, maximum residual density $0.22 \mathrm{e} \AA^{-3}$, minimum $-0.14 \mathrm{e} \AA^{-3}$, extinction coefficient (Larson, 1969) $g=6.5(7) \times$ $10^{-6}$, where the correction factor $\left(1+g I_{c}\right)^{-1}$ was applied to $F_{c}$, maximum correction $18.6 \%$ for the 120 reflection.
Coordinates* and equivalent isotropic thermal parameters are given in Table 1; bond distances and angles are given in Table 2. The molecule is illustrated in Fig. 1. The unit cell is illustrated in Fig. 2.

Related literature. Structure of methyl 2-[(2,6dimethoxyphenyl)ethynyl]benzoate: Huang, Evans,

[^1]Fig. 1. ORTEP (Johnson, 1965) drawing of the title compound, with thermal ellipsoids drawn at the $40 \%$ probability level, and H atoms represented by circles of arbitrary radius.


Fig. 2. Stereoview of unit cell, viewed slightly oblique to the $b$ axis, with $c$ horizontal

Fronczek \& Gandour (1991). Structure of 2-[(2,6dihydroxyphenyl)ethynyl]benzoic acid: Huang, Evans, Fronczek \& Gandour (1992). Structure of 3-(2-methoxyphenyl)-1 H -2-benzopyran-1-one:
Prince, Miller, Fronczek \& Gandour (1989). Structure of the dimethyl derivative of lateropyrone: Bushnell, Li \& Poulton (1984).

We thank the National Science Foundation for support of this work through grant CHE8923033.

## References

Bushnell, G. W., Li, Y. L. \& Poulton, G. A. (1984). Can. J. Chem. 62, 2101-2106.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Cromer, D. T. \& Waber, J. T. (1974). International Tables for $X$-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Huang, E. T., Evans, K. L., Fronczek, F. R. \& Gandour, R. D. (1991). Acta Cryst. C47, 2727-2729.
huang, E. T., Evans, K. L., Fronczek, F. R. \& Gandour, R. D. (1992). Acta Cryst. C48, 763-765.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C. (1969). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Prince, P., Miller, J. A., Fronczek, F. R. \& Gandour, R. D. (1989). Acta Cryst. C45, 1086-1087.

# Structure of 3-Iodo-2,5-diphenyltellurophene, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ITe}$ 

By J. Zukerman-Schpector<br>Instituto de Física e Quimica de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560 São Carlos, SP, Brazil

and Miguel J. Dabdoub, Vânia B. Dabdoub and Marco A. Pereira<br>Departamento de Química, FFCL, Universidade de São Paulo, Av. Bandeirantes 3900, 14049 Ribeirão Preto, SP, Brazil

(Received 16 September 1991; accepted 27 September 1991)


#### Abstract

C}_{16} \mathrm{H}_{11} \mathrm{ITe}, \quad M_{r}=457.74\), orthorhombic, Pbca, $a=8.588$ (1), $b=24.280$ (3), $c=13.992$ (2) $\AA$, $V=2918(1) \AA^{3}, \quad Z=8, \quad D_{x}=2.084 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo K $\alpha)=0.71073 \AA, \mu=41.18 \mathrm{~mm}^{-1}, F(000)=$ 1696, $T=298 \mathrm{~K}, R=0.043$ for 1617 observed reflections. The heterocyclic ring is essentially planar making dihedral angles of $126.0(2)$ and $29.2(5)^{\circ}$ with the phenyl rings. Distances and angle around the Te atom are: Te-C 2.077 (9), 2.070 (9) $\AA$ and $\mathrm{C}-\mathrm{Te}-\mathrm{C} 82.7$ (4) ${ }^{\circ}$.


Experimental. The data collection and refinement parameters are summarized in Table 1. The structure was solved using standard direct methods and difference Fourier techniques. In the final cycles of full-matrix least-squares refinement on $F$ all non- H atoms were treated anisotropically; the H atoms were included, as fixed contributors, at positions found in a difference Fourier synthesis, all with a common isotropic temperature factor that refined to $U=$
0.07 (1) $\AA^{2}$. Data were corrected for Lp and absorption, with maximum and minimum transmission factors of 1.59 and 0.84 (Walker \& Stuart, 1983). Scattering factors for non-H atoms were taken from Cromer \& Mann (1968) with corrections for anomalous dispersion taken from Cromer \& Liberman (1970); for $H$ atoms from Stewart, Davidson \& Simpson (1965). Programs used: SHELX76 (Sheldrick, 1976) and ORTEP (Johnson, 1965). Most of the calculations were performed on a VAX 4620 computer of the Instituto de Física e Química de São Carlos.

Atomic coordinates are listed in Table 2,* bond lengths and bond angles are listed in Table 3. Fig. 1

[^2]
[^1]:    * Lists of H -atom coordinates, bond distances and angles involving H atoms, torsion angles, anisotropic thermal parameters, least-squares-planes data, and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54644 ( 16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ST0545]
    

[^2]:    * Lists of H-atom positions, anisotropic thermal parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54698 ( 20 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: LI0110]

